Stanley Max

horizontal rule

Home

Book arts Course material Current interests Earned degrees eps Files Math links My photographs Publications TI-83/84 guides

Normal distributions
Two-sample μ and π
Two-sample σ
ANOVA
Linear regression

Chapter 9
"Inferences Based on Two Samples: Confidence Intervals and Tests of Hypotheses"

Section 9.1:
"Comparing Two Population Means: Independent Sampling"

Section 9.3:
"Comparing Two Population Proportions: Independent Sampling"

Section 9.2:
"Comparing Two Population Means: Paired Difference Experiments"

Example 9.1 and Example 9.2

Finding a Large-Sample 95% Confidence Interval for  μ- μ2

Step 1:

Step 2:

Step 3 (results):

A Large-Sample Test of Hypothesis for  Haμ μ2

Step 1:

Step 2:

Step 3 (results):

Exercise 9.11

Finding a 95 % Small-Sample Confidence Interval for  μ1 - μ2

Step 1:

Step 2:

Step 3 (results):

A Small-Sample Test of Hypothesis for  Haμ1 ≠ μ2

Step 1:

Step 2:

Step 3 (results):

 

Example 9.6

Finding a 95% Confidence Interval for  π1 - π2

Step 1:

Step 2:

Step 3 (results):

A Test of Hypothesis for Haπ1 ≠ π2

Step 1:

Step 2:

 

Step 3 (results):

Example 9.5

See the data in Table 9.5 on p. 504.

Finding a 95% Paired-Difference Confidence Interval for μd = (μ1 - μ2)

Note: Typically, μ1 - μ2 = 0.

Step 1 (entering the data, with seven rows shown):

Step 2 (creating List 3 by subtracting List 2 from List 1):

Step 3:

Step 4:

Step 5 (results):

A Paired-Difference Test of Hypothesis for  Ha: μd = (μ1 - μ2)

Step 1 and Step 2 are the same as above.  Next we have Step 3:

Step 4:

Step 5 (results):

[Home]

[Book arts]
[Course material]
[Current interests]
[Earned degrees]
[eps Files]
[Math links]
[My photographs]
[Publications]
[TI-83/84 guides]

[Normal distributions] [Two-sample μ and π] [Two-sample σ] [ANOVA] [Linear regression]

horizontal rule

University of Southern Maine

horizontal rule

Creative Commons License (2005, 2006, 2007, 2008, 2009, 2010) Stanley Max