Stanley Max                Chapter 9 "Inferences Based on Two Samples: Confidence Intervals and Tests of Hypotheses" Section 9.1: "Comparing Two Population Means: Independent Sampling" Section 9.3: "Comparing Two Population Proportions: Independent Sampling" Section 9.2: "Comparing Two Population Means: Paired Difference Experiments" Example 9.1 and Example 9.2 Finding a Large-Sample 95% Confidence Interval for  μ1 - μ2 Step 1: Step 2:  Step 3 (results): A Large-Sample Test of Hypothesis for  Ha: μ1 ≠ μ2 Step 1: Step 2:  Step 3 (results):  Exercise 9.11 Finding a 95 % Small-Sample Confidence Interval for  μ1 - μ2 Step 1: Step 2:  Step 3 (results): A Small-Sample Test of Hypothesis for  Ha: μ1 ≠ μ2 Step 1: Step 2:  Step 3 (results): Example 9.6 Finding a 95% Confidence Interval for  π1 - π2 Step 1: Step 2: Step 3 (results): A Test of Hypothesis for Ha: π1 ≠ π2 Step 1: Step 2: Step 3 (results):  Example 9.5 See the data in Table 9.5 on p. 504. Finding a 95% Paired-Difference Confidence Interval for μd = (μ1 - μ2) Note: Typically, μ1 - μ2 = 0. Step 1 (entering the data, with seven rows shown): Step 2 (creating List 3 by subtracting List 2 from List 1):   Step 3: Step 4: Step 5 (results): A Paired-Difference Test of Hypothesis for  Ha: μd = (μ1 - μ2) Step 1 and Step 2 are the same as above.  Next we have Step 3: Step 4: Step 5 (results): [Home]

[Normal distributions] [Two-sample μ and π] [Two-sample σ] [ANOVA] [Linear regression] Portland ME  04104-9300Tel.: (207) 228-8179 E-mail: smax @ usm.maine.edu  (2005, 2006, 2007, 2008, 2009, 2010) Stanley Max