
Finite Population Correction Factor

If we know the population size — of course, we often do not — but if we do, then we can use
that information to reduce our sampling error ( ). What we do is multiply  by the finite
population correction factor, whose formula follows.
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So, let’s say that we have the following data, which I have modified from p. 283 of our
textbook:

$1076.39

$273.62

77

1 000

x

s

n

N









Understand that N (the population size) is the value that we don’t usually have.

Let’s figure out a 95% confidence interval without making use of N:
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[And you will get a very slightly different, and more correct, answer if you do the interval using your calculator
function.]

Now, let’s multiply  by the finite population correction factor, as such:
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What have we gained? A more precise confidence interval, without any loss of confidence.

And how did we accomplish this? By reducing the sampling error some 3.9%. Notice the
value of the finite population correction factor in the present case:
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